Part I	Exploring and Understanding Data
Chapter 1	Stats Starts Here
Statistics is	a way of reasoning, along with a collection of tools and methods,
	designed to help us understand the world.
Statistics are	particular calculations made from data.
A statistic is	A numerical summary of data
Statistics is about	variation
Chapter 2	Data
Data are	values along with their context
The context for data values is	The "W's"
provided by	Why do we care about the data?
	Who are the individuals described by the data?
	What variables do the data contain?
	When
	Where
	How
	(Necessary)
Three steps to doing Statistics	Think –were you're headed and why (the "W's").
right:	Show – the mechanics of calculating statistics and making displays.
	Tell – what you've learned remembering the "4 Cs."
4 Cs: conclusions are	Clear, concise, complete, and in context.
Data table	An arrangement of data in which each row represents a case and
	each column represents a variable.
Case	An individual about whom we have data (row of data table)
Individual	Object described by a set of data (person, animal, thing, identifier variable)
Variable	Holds information about the same characteristic for many cases.
	(column of data table)
Variables can usually be	
identified as either or:	Categorical or quantitative
Categorical variable	Places an individual into one of several groups or categories
Quantitative variable	Has numerical values (with units) that measure some characteristic
	of each individual.
Ordinal variable	Reports order with out natural units.
You must look at the	Why
of your study to decide whether	
to treat it as or	Categorical or quantitative
Identifier variable	ID number or other convention often used to protect confidentiality
	(Categorical variable with exactly one individual in each category)
Chapter 3	Displaying and Describing Categorical Data
Three things you should always	1. Make a picture – a display will help you <i>think</i> clearly about
do first with data:	patterns and relationships that may be hiding in your data.
	2. Make a picture – <i>show</i> important features and patterns in your
	data
	3. Make a picture – best way to <i>tell</i> others about your data.
To analyze categorical data, we	
often use or	counts (frequencies) or percents (relative frequencies)

of individuals that fall into various categories.	
(Relative) Frequency table [Distribution of a categorical variable]	Lists the categories in a categorical variable and the (percentage) count of observations for each category.
Area principle	In a statistical display, each data value should be represented by the same amount of area.
(Relative Frequency) Bar chart	Shows a bar representing the (percentage) count of each category in a categorical variable.
Pie chart	Shows how a "whole" divides into categories by showing a wedge of a circle whose area corresponds to the proportion in each category.
Contingency table	Displays counts (percentages) of individuals falling into named categories on two (or more) variables, columns vs. rows. The table categorizes the individuals on all variables at once, to reveal possible patterns in one variable that may be contingent on the category of the other.
Marginal distribution	The distribution of one of the variables <u>alone</u> is seen in the totals found in the last row/column of a contingency table. (see frequency table)
Conditional distribution	The distribution of a variable restricting the <i>Who</i> to consider only a smaller group of individuals. [A single row (column) of the contingency table.]
Relationships among categorical variables are described by calculating from the given. This avoids	percents counts count variation between them.
Segmented Bar Chart	A stacked relative frequency bar chart (100% total). Often better than a pie chart for comparing distributions. [a pie chart within a bar chart]
Independent variables	The conditional distribution of one variable is the same for each category of the other. [if rows (columns) of contingency table have = distributions]
Simpson's paradox	When averages are taken across different groups, they can appear to contradict the overall averages
Chapter 4	Displaying Quantitative Data
Distribution of a quantitative variable	Tells us what values a variable takes and how often it takes them. Shows the pattern of variation of a (quantitative) variable.
Stem-and-leaf plot	A sideways histogram that shows the individual values. Bins/intervals might be the tens places with the ones places strung out sequentially to the right.
Back-to-back stem-and-leaf plot	Useful for comparing two related distributions with a moderate number of observations.
Dotplot	Graphs a dot for each case against a single axis.
(Relative Frequency) Histogram	Uses adjacent, equal-width bars to show the distribution of values in a quantitative variable. Each bar represents the (percentage) count falling in a particular interval of values. (% are useful for comparing

	several distributions with different numbers of observations.)
A good estimate for how many	
bars will give a decent	Number of observations
histogram =	5
Once we make a picture, we	Shape, center, spread, and any unusual features.
describe a distribution by telling	
about its	
Shape	Uniform, single, multiple modes
11.10	Symmetry vs. skewed
Uniform	A distribution that is roughly flat.
Mode	A hump or local high point in the shape of the distribution of a variable (unimodal, bimodal, multimodal).
Symmetric	A distribution where the two halves on either side of the center look
	approximately like mirror images of each other.
Skewed (left/right)	A non-symmetrical distribution where one tail stretches out further (to the left/right) than the other.
Center	A "typical" value that attempts the impossible, summarizing the
	entire distribution with a single number. {midpoint}
Spread	A numerical summary of how tightly the values are clustered around
	the "center." {range}
Outliers	Extreme values that don't appear to belong with the rest of the data.
Timeplot	Displays quantitative data collected over time (x-axis). Can reveal
	trends overlooked by histograms and stem-and-leaf plots that ignore
	time order. Often, successive values are connected with lines to
	show trends more clearly.
Time series	Measurements of a variable taken at regular time intervals.
Seasonal variation	A pattern in a time series that repeats itself at know regular intervals of time.
Chapter 5	Describing Distributions Numerically
Median	Middle value (balances data by counts) (equal-areas point)
Range	Max – min data values
<i>p</i> th percentile	Value such that <i>p</i> percent of the observations fall at or below it.
Lower quartile (Q1)	Median of the lower half. (25 th percentile)
Upper quartile (Q3)	Median of the upper half. (75 th percentile)
Interquartile range (IQR)	Q3 - Q1, the middle half of the data.
5-number summary	Max
	Q3
	Median
	Q1
	Min
Suspected outlier	If observation $> Q3 + (1.5)(IQR)$
	Or observation $<$ Q1 – (1.5)(IQR)
Boxplot	Displays the 5-number summary as a central box with whiskers that
	extend to the non-outlying data values. Particularly effective for
	comparing groups. However, a histogram or stem-and-leaf plot is a
	clearer display of the shape of a distribution.
Mean	[Average]

	$\overline{x} = \underline{\sum x}$
	n
	Add up all the numbers and divide by n
	(balance point, by size) (balances deviations)
Deviation	How far each data value is from the mean.
Variance	$\sum_{x} (x - \overline{x})^2$
	$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$
	Sum of the squared deviations from the mean, divided by $n - 1$.
Standard deviation	
	$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$
	$\sqrt{n-1}$
	The square root of the variance (gets us back to the original units)
Report summary statistics to	
decimal places	1 or 2
	more than the original data.
When describing the	
distribution of a quantitative	
variable, if the shape is skewed	
then report	median and IQR (they are based on position)
If the shape is symmetric then	
report and	mean and standard deviation (they are based on size/value)
repeat calculations without	
if present.	outliers
A complete analysis of data	
almost always includes:	Verbal, visual, and numerical summaries.
Answers are, not	sentences, numbers
Chapter 6	The Standard Deviation as a Ruler and the Normal Model
Adding (subtracting) a constant	adda (subtracts)
to every data value	adds (subtracts)
the same constant to measures	
of position/center and	doos not change
measures of spread.	does not change
Multiplying (dividing) every	
data value by a constant the same constant	multiplies (divides)
to measures of position/center	mumphes (urviues)
and measures of	multiplies (divides)
spread.	mumphes (urviues)
Changing the center and spread	
of a variable is equivalent to	changing its units.
Standardizing	Uses the standard deviation as a ruler to measure distance from the
L Standardi Lillig	
	mean creating z-scores
	mean creating z-scores $(x - \overline{x})$
	-
	-
z-scores tell us	$z = \frac{(x - \overline{x})}{s}$ the number of standard deviations a value is from the mean.
	-

	2. Identifying unusual or surprising values among data.
	3.
Units can be eliminated by	standardizing the data.
have no units.	z-scores
When we standardize data to get	
we do two things.	z-scores
First we the data by	shift
subtracting the mean. Then we	
the data by dividing by	rescale
their standard deviation.	
Standardizing has the following	Shape – is not changed.
affect on the distribution of a	Center – the mean is shifted to 0
variable:	Spread – the standard deviation is rescaled to 1
If the distribution of a	
quantitative variable is	unimodal
and then the we can	roughly symmetric
replace histograms by	
approximating the distribution	
with	a normal model.
are summaries of	Statistics
the data denoted with	Latin letters
mean, standard deviation,	\overline{x} , s
are numerically	Parameters
valued attributes [statistics] of a	
model (they don't come from	
the data, they just specify the	
model) denoted with	Greek letters
mean, standard deviation,	μ,σ
A normal model is constructed	$y = \frac{1}{\sqrt{2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
from a rather complex equation	$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{\sigma}}$
only dependent on parameters	mean, standard deviation
for and	$N(\mu,\sigma)$
The distribution of each normal	
model is,, and	unimodal, symmetric, and bell-shaped
as show by its density curve.	
We call it a density curve	
because the equation for the	
normal model adjusts the scale	
(of y, height) so that the area $\frac{1}{2}$ and $\frac{1}{2}$	1
under the curve = and gives	1 relative frequency
the for the distribution.	relative frequency
This scaling is extremely	Specifically, it allows us to convert standard deviations into percents
important in conceptualizing	that are much easier to comprehend.
how unusual a value(z-score) is.	
To avoid having to work with	we convert our data to z-scores and use just one Standard Normal
the complicated normal model	Model $N(0,1)$ and its associated table.

equation or lug around a myriad	
of tables for every possible	
$N(\mu,\sigma)$	
Normal percentile	Read from a table of normal probabilities, it gives the percentage of
Normal percentile	values in a standard normal distribution found lying below a
	particular z-score.
The easiest conversion (from	
standard deviations to percents)	
is to remember the	68,95,99.7
rule. About of the data fall	68%
within 1 standard deviation of	
the mean, about within 2	95%
and about within 3.	99.7%
Use this TI function	normalcdf(lower z-score, upper z-score)
if asked to find % or area	
Use this TI function	invNorm(area to left)
If given % or area	output is z-score that may have to be converted back
is a more precise	A normal probability plot
method than a histogram of	
checking the nearly normal	
condition, that the shape of the	
data's distribution is	unimodal
and	roughly symmetric
If the normal probability plot is	
roughly	a diagonal straight line
Then a normal model	
	will approximate the (actual) data well.
The of a normal	Inflection point
curve identifies one standard	
deviation from the mean.	
3 reasons normal distributions	1. Good descriptions for some distributions of real data.
are important in statistics:	2. Good approximations to many kinds of chance outcomes.
	3. Utilized in many statistical inference procedures.
Part II	Exploring Relationships Between Variables
Chapter 7	Scatterplots, Association, and Correlation
Scatterplot	Shows the relationship between two quantitative variables on the
	same cases (individuals).
is plotted on the x-axis.	Explanatory (<i>independent</i> /input) variable
is plotted on the y-axis.	Response (<i>dependent</i> /output) variable
Once we make a scatterplot, we	1. Form : straight, curved, no pattern, other?
describe association by telling about:	2. Direction: + or - slope? 3. Strength: how much scatter (how closely points follow the form)
	3. Strength: how much scatter {how closely points follow the form}4. Unusual Features: outliers, clusters, subgroups?
is a deliberately vague	Association
term describing the relationship	
between two variables. If	
positive then	increases in one variable generally correspond to increases in the
	other.

Correlation describes the	strength
and of the	direction, linear
relationship between two	
variables, without	quantitative
	outliers.
significant 3 conditions needed for	1. Quantitative Variables
Correlation:	2. Straight Enough
	3. Outlier
The correlation coefficient is	finding the average product of the z-scores (standardized values).
found by	
	$r = \frac{\sum z_x z_y}{n-1}$
It's value ranges from	
, it has no, and is	-1 to +1
immune to changes of	units.
	scale or order.
Perfect correlation r =,	
occurs only when	the points lie exactly on a straight line.
	(you can perfectly predict one variable knowing the other)
No correlation $r = $,	0
means that knowing one	
variable gives you	no information about the other variable.
You should give the and	Mean
of x and y along with	Standard deviation
the correlation because	Correlation is not a complete description of two-variable data and
	the its formula uses means and standard deviations in the z-scores.
Scatterplots and correlation	
coefficients never prove	causation.
Lurking variable	A variable other than x and y that simultaneously affects both
To add a asta aprical workship to	variables, accounting for the correlation between the two.
To add a categorical variable to	use a different plot color or symbol for each estageny
an existing scatterplot	use a different plot color or symbol for each category.
Chapter 8	Linear Regression
Regression to the mean	Because the correlation is always less than 1.0 in magnitude, each
	predicted \hat{y} tends to be fewer standard deviations from its mean than its corresponding y uses from its mean $(\hat{a}_{1} - r_{2})$
Desidual	its corresponding x was from its mean. ($\hat{z}_y = rz_x$)
Residual	Observed value – predicted value
If positive	$y - \hat{y}$ Then the model makes an underestimate.
If negative	Then the model makes an overestimate.
Regression line	The unique line that minimizes the variance of the residuals (sum of
Line of best fit	the squared residuals).
For standardized values	$\hat{z}_{y} = rz_{x}$
For actual x and y values	$\hat{y} = b_0 + b_1 x$
To calculate the regression line	
in real units (actual x and y	1. Find slope, $b_1 = \frac{rs_y}{s_y}$
values)	~
	2. Find y-intercept, plug b_1 and point (x, y) [usually (\bar{x} , \bar{y})]
	into $\hat{y} = b_0 + b_1 x$ and solve for b_0
	3. Plug in slope, b_1 , and y-intercept, b_0 , into $\hat{y} = b_0 + b_1 x$

3 conditions needed for Linear	1. Quantitative Variables
Regression Models:	2. Straight Enough – check original scatterplot & residual scatterplot
/* same as correlation */ R^2	3. Outlier (clusters) –points with large residuals and/or high leverage
ĸ	The square of the correlation, r , between x and y .
	The success of the regression model in terms of the fraction of the
	variation of y accounted for by the model.
	(XX% of the variability in y is accounted for by variation in x)
	(differences in <i>x</i> explain XX% of the variability in <i>y</i>)
A high R^2	Does not demonstrate the appropriateness of the regression.
Looking at a	a scatterplot of the residuals vs. the <i>x</i> -values.
is a good way to check the	
Straight Enough Condition.	(appropriateness)
It should be	boring: uniform scatter with no direction, shape, or outliers
The is the key to assessing	variation in the residuals
how well the model fits	
(extracts the form).	
Standard deviation of the	Gives a measure of how much the points spread around the
residuals, s_e	regression line.
$1 - R^2$	The fraction of the original variation left in the residuals.
	(The percentage of variability not explained by the regression line.)
Extrapolations	Dubious predictions of y-values based on x-values outside the range
1	of the original data.
Chapter 9	Regression Wisdom
What can go wrong with	1. Inferring Causation
regression:	2.Extrapolation
	3.Outliers and Influential Points
	4.Change in Scatterplot Pattern
	5.Means (or other summaries) rather than actual data.
High leverage points	Have x-values far from \bar{x} ((\bar{x}, \bar{y}) is the fulcrum) and pull more
gg- points	strongly on the regression line.
With enough leverage the	residuals
can appear deceptively small.	
Leverage and residual produce	1) Extreme Conformers: don't influence model but do inflate R2
three flavors of outliers:	2) Large Residuals: might not influence model much but aren't
unce mayors or outlets.	consistent with the overall form.
	3) Influential Points: those that distort the model
Influential point	Omitting it from the data results in a very different regression model
[most menacing]	Omitting it from the data results in a very different regression model
	They distort the model which causes their residual to be small
Influential points are often difficult to detect because	They distort the model which causes their residual to be small.
	Coloulate the representation line with and without the suggest restrict
The surest way to verify an	Calculate the regression line with and without the suspect point.
outlier and its affects is to	
	Compliments a scatterplot of the residuals in the search for
outlier and its affects is to	Compliments a scatterplot of the residuals in the search for conditions, such as subsets, that may compromise the effectiveness
outlier and its affects is to A histogram of the residuals	Compliments a scatterplot of the residuals in the search for conditions, such as subsets, that may compromise the effectiveness of the regression model.
outlier and its affects is to A histogram of the residuals Consider comparing two or	Compliments a scatterplot of the residuals in the search for conditions, such as subsets, that may compromise the effectiveness of the regression model. 1) Points with large residuals and/or high leverage.
outlier and its affects is to A histogram of the residuals	Compliments a scatterplot of the residuals in the search for conditions, such as subsets, that may compromise the effectiveness of the regression model.

Regressions based on	
summaries of the data	Tend to look stronger than the regression on the original data.
Because	Summary statistics are less variable than the underlying data.
Chapter 10	Re-expressing Data: Get It Straight!
Re-expression	A means of altering the data to achieve the conditions/structure
Re expression	necessary to utilize particular summaries or models.
Several reasons to consider a	1. Make the form of a scatterplot straighter.
re-expression:	 Make the form of a scatterplot straighter. Make the scatter in a scatterplot more consistent (not fan shaped).
ie expression.	3. Make the distribution of a variable (histogram) more symmetric.
	4. Make the spread across different groups (boxplots) more similar.
Ladder of Powers	Orders the effects that the re-expressions have on the data
Ludder of Fowers	$\begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A good starting point is	taking logs.
If all else fails	try whacking the data with two logs (log x and log y).
Base 10 logs are roughly Re-expression limitations:	One less than the number of digits needed to write the number.1. Can't straighten scatterplots that turn around.
Re-expression minitations.	
	2. Can't re-express "-" data values with $\sqrt{(+\text{constant to shift} > 0)}$
	3. Minimal affect on data values far from 1-100. (-constant to shift)
When discussing the accuracy	4. Can't unify multiple modes.
When discussing the accuracy or confidence of the linear	Appropriateness of the model as indicated by the residual plot
	Success of the model as indicated by R^2
regression model be sure to	Success of the model as indicated by K
comment on both the & Part III	Cothoring Data
Chapter 11	Gathering Data Understanding Randomness
What is it about random	
selection that makes it seem	 Nobody can guess the outcome in advance. Outcomes are equally likely.
fair?	2. Outcomes are equally likely.
Random event/nhenomenon	We know what outcomes could happen but not which particular
Random event/phenomenon	We know what outcomes could happen, but not which particular values will happen
Random event/phenomenon	values will happen.
Random event/phenomenon	values will happen. Outcomes that we cannot predict but that nonetheless have a regular
-	values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions.
If our goal as statisticians is to	values will happen. Outcomes that we cannot predict but that nonetheless have a regular
If our goal as statisticians is to uncover the truth about the	values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions.
If our goal as statisticians is to uncover the truth about the world around us, then	values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions.
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool.
If our goal as statisticians is to uncover the truth about the world around us, then	values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions.
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate.
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate. Models random events by using random numbers to specify event
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate. Models random events by using random numbers to specify event outcomes with relative frequencies that correspond to the true real-
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate. Models random events by using random numbers to specify event outcomes with relative frequencies that correspond to the true real-world relative frequencies we are trying to model.
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate. Models random events by using random numbers to specify event outcomes with relative frequencies that correspond to the true real-world relative frequencies we are trying to model. An artificial representation of a random process used to study its
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both Simulation	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate. Models random events by using random numbers to specify event outcomes with relative frequencies that correspond to the true realworld relative frequencies we are trying to model. An artificial representation of a random process used to study its long-term properties.
If our goal as statisticians is to uncover the truth about the world around us, then randomness is both	 values will happen. Outcomes that we cannot predict but that nonetheless have a regular distribution in very many repetitions. our greatest enemy and our most important tool. A sequence of random outcomes that model a situation, often difficult to collect data on and with a mathematical answer hard to calculate. Models random events by using random numbers to specify event outcomes with relative frequencies that correspond to the true real-world relative frequencies we are trying to model. An artificial representation of a random process used to study its

Trial	The sequence of several components representing events that we are pretending will take place.
Response variable	The result of each trial with respect to what we were interested in.
Chapter 12	Sample Surveys
Population	The entire group of individuals or instances about whom we hope to learn, but examining all of them is usually impractical, if not impossible.
Sample	A (representative) subset of a population, examined in hope of learning about the population.
Sample survey	A study that asks questions of a sample drawn from some population in the hope of learning something about the entire population.(Polls)
Statistic	Any summary calculated from the (sampled) data.
They are written in	Latin $(\bar{x}, s, r, b, \hat{p})$
Parameters	Key numbers in mathematical models used to represent reality.
They are written in	Greek (μ , σ , ρ , β , p)
Population parameter	A numerically valued attribute of a model for a population, often unknowable and estimated from sampled data.
Sample statistic	Correspond to, and thus estimate, a population parameter.
Representative Sample	Statistics computed from it accurately reflect the corresponding population parameters.
Bias	Any systematic failure of a sampling method to represent its population. It is almost impossible to recover from.
5 common bias errors:	 Voluntary response – individuals can choose on their own whether to participate in the sample. Always yields invalid samples. Convenience – when the sample is comprised of individuals readily available. Always yields a non-representative sample. Undercoverage – when individuals from a subgroup of the population are selected less often than they should be. Nonresponse – when a large fraction of those sampled will not or cannot respond. Response – when respondents' answers might be affected by suvey design, such as question wording or interviewer behavior.
is often the best use of time and resources when sampling or surveying.	Reducing biases
Randomization	The best defense against bias. (stirring to make sure that on average the sample looks like the rest of the population)
Simple random sample (SRS)	A sample in which each set of n elements in the population has an equal chance of selection. The standard method of utilizing radomization to make the sample representative of the population of interest.
Sampling variability Sampling error	The natural tendency of randomly drawn samples to differ from each other.
The precision of the statistics of	

a sample depend on	the sample size (soup spoon)
not	its fraction of the larger population.
Census	A sample that consists of the entire population.
Sampling frame	A list of individuals, which clearly defines but may not be
Sampling nume	representative of the entire population, from which the sample is
	drawn.
Stratified samples	These samples can reduce sampling variability by identifying
Straining Samples	homogeneous subgroups and then randomly sampling within each.
Cluster samples	These samples randomly select among heterogeneous subgroups that
F	each resemble the population at large, making our sampling tasks
	more manageable.
Systematic samples	These samples can work, when there is no relationship between the
v 1	order of the sampling frame and the variables of interest, and are
	often the least expensive method of sampling. But we still want to
	start them randomly.
Multistage sample	A sampling scheme that combines several sampling methods.
Identify the W's:	
Why	Population and associated sampling frame.
What	Parameter of interest and variables measured.
Who	Sample actually drawn.
When, Where, and How	Given by the sampling plan.
/* previously Who < What */	
Chapter 13	Experiments and Observational Studies
Observational study	A study based on data in which no manipulation of factors has been
	employed (researchers don't assign choices). Usually focuses on
	estimating differences between groups but is not possible to
	demonstrate a causal relationship. Often used when an experiment
	is impractical.
Retrospective	Subjects are selected and then their previous conditions or behaviors
	are determined.
Prospective	Subjects are followed to observe future outcomes. No treatments
To prove a course and offect	are deliberately applied.
To prove a cause-and-effect relationship we need to perform	a valid experiment.
relationship we need to perform	
An experiment	manipulates factor levels
to create treatments,	randomly assigns subjects
to these treatment levels, and	
	compares the responses of the subject groups
thenacross treatment levels.	compares the responses of the subject groups (boxplots are often a good choice for displaying results of groups)
then	(boxplots are often a good choice for displaying results of groups)
thenacross treatment levels.	(boxplots are often a good choice for displaying results of groups) A variable whose levels are controlled by the experimenter.
thenacross treatment levels. Factor	(boxplots are often a good choice for displaying results of groups)A variable whose levels are controlled by the experimenter.The specific values that the experimenter chooses for a factor.
thenacross treatment levels. Factor Level	 (boxplots are often a good choice for displaying results of groups) A variable whose levels are controlled by the experimenter. The specific values that the experimenter chooses for a factor. The process, intervention, or other controlled circumstance applied
then across treatment levels. Factor Level	 (boxplots are often a good choice for displaying results of groups) A variable whose levels are controlled by the experimenter. The specific values that the experimenter chooses for a factor. The process, intervention, or other controlled circumstance applied to randomly assigned experimental units. Treatments are the
thenacross treatment levels. Factor Level	 (boxplots are often a good choice for displaying results of groups) A variable whose levels are controlled by the experimenter. The specific values that the experimenter chooses for a factor. The process, intervention, or other controlled circumstance applied
thenacross treatment levels. Factor Level	 (boxplots are often a good choice for displaying results of groups) A variable whose levels are controlled by the experimenter. The specific values that the experimenter chooses for a factor. The process, intervention, or other controlled circumstance applied to randomly assigned experimental units. Treatments are the different levels of a single factor or are made up of combinations of levels of two or more factors.
then across treatment levels. Factor Level Treatment	 (boxplots are often a good choice for displaying results of groups) A variable whose levels are controlled by the experimenter. The specific values that the experimenter chooses for a factor. The process, intervention, or other controlled circumstance applied to randomly assigned experimental units. Treatments are the different levels of a single factor or are made up of combinations of

Usually called or	Subjects
when human.	Participants
Response	A variable whose values are compared across different treatments.
The 4 principals of	1. Control sources of variation other than the factors we are testing
experimental design:	by making conditions as similar as possible for all treatment groups.
	 2. Randomize subjects to treatments to even out effects that we cannot control.
	3. Replicate over as many subjects as possible. Would like to get
	 results from a representative sample of the population of interest. 4. Block and then randomize within to reduce the effects of
	identifiable attributes of the subjects that cannot be controlled.
Control group	The experimental units assigned to a baseline treatment level,
	typically either the default treatment, which is well understood, or a
	null, placebo treatment.
	Their responses provide a basis for comparison.
Statistically significant	When an observed difference is too large for us to believe that it is
	likely to have occurred naturally (only by chance).
Placebo	A (fake) treatment known to have no effect, administered so that all
	groups experience the same conditions.
Placebo effect	The tendency of many human subjects (often 20% or more of
	experimental subjects) to show a response even when administered a
	placebo.
Blinding	Individuals associated with an experiment are not aware of how
	subjects have been allocated to treatment groups.
2 main classes of individuals	1. those who could influence the results (subjects, treatment
who can affect the outcome of	administrators, or technicians)
an experiment:	2. those who evaluate the results (judges, treating physicians, etc.)
Single-blind	When every individual in <i>either</i> of these classes is blinded.
Double-blind	When everyone in <i>both</i> classes is blinded.
Block	Same idea for experiments as stratifying is for sampling. Group together subjects that are similar and randomize within those groups as a way to remove unwanted variation (of the differences between the groups so that we can see the differences caused by the
	treatments more clearly)
Matching	(Doing parallel experiments on different groups.)
Matching	In a retrospective or prospective study, subjects who are similar in
	ways not under study may be paired and then compared with each other on the variables of interest as a way to reduce unwanted
	other on the variables of interest as a way to reduce unwanted variation in much the same way as blocking.
Designs:	variation in much the same way as blocking.
Designs: Randomized block design	The randomization occurs only within blocks.
Completely random design	All experimental units have an equal chance of receiving any
completely random design	particular treatment.
The best experiments are	Randomized, comparative, double-blind, placebo-controlled.
usually:	
Lurking (Confounding)	
variables are outside influences	
	1

harder to understand the relationship
regression and observational studies (a designed experiment).
Creates an association between two other variables that tempts us to
think that one may cause the other.
[regression analysis or observational study]
Some other variable associated with a factor has an effect on the
response variable. [experiments]
Arises when the response we see in an experiment is at least
partially attributable to uncontrolled variables.
Randomness and Probability
From Randomness to Probability
The proportion of times the event occurs in many repeated trials of a
random phenomenon. (the long-term relative frequency of an event)
Random phenomena.
A single attempt or realization of a random phenomenon.
The value measured, observed, or reported for each trial.
A combination of outcomes usually for the purpose of attaching a
probability to them. Denoted with bold capital letters, A , B , or C .
The outcome of one trial doesn't influence or change the outcome of
another.
The long-run relative frequency of repeated independent events
settles down to the true probability as the number of trials increases.
Assumes that the more something hasn't happened, the more likely
it becomes.
Random processes don't need to compensate in the short run to get
back to the right long-run probabilities. (Streaks happen - the coin can't remember what happened and make things come out right)
can't remember what happened and make things come out right.) Relative frequencies
[at the beginning of the year it was a code-word for percent]
The likelihood of the event's occurrence
$P(\mathbf{A}) = \frac{\text{number of outcomes in } \mathbf{A}}{\text{total number of outcomes}} \text{ if outcomes are equally likely}$
$0 \le P(\mathbf{A}) \le 1$ The collection of all possible outcome values.
The sum of the probabilities of all possible outcomes must be 1.
$P(\mathbf{S}) = 1$
The probability of an event occurring is 1 minus the probability that
it doesn't occur. $P(\mathbf{A}) = 1 - P(\mathbf{A}^c)$ Two events that share no outcomes in common, mutually exclusive.
(outcomes cannot happen at the same time , one prevents the other)
Addition Rule
$P(\mathbf{A} \cup \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) \qquad ; \cup = \text{Union}$ Each probability is between 0 and 1(inclusive)

The says:	Multiplication Rule
If A and B are independent	
events,	$D(\mathbf{A} \cap \mathbf{B}) = D(\mathbf{A}) \vee D(\mathbf{B})$ $\cdot \cdot \cdot = \mathbf{I}_{\mathbf{A}}$
Then the probability of A and B	$P(\mathbf{A} \cap \mathbf{B}) = P(\mathbf{A}) \times P(\mathbf{B})$; \cap = Intersection
Chapter 15	Probability Rules!
andshould	Venn diagrams, two-way contingency tables
be used to display the sample	
space and aid probability	
calculations.	
When working with	
probabilities:	
"or" is the of the two	Union
events and translates into	+
"and" is the of the two	Intersection
events and translates into	X
"not" & "at least" often	Complement
indicate	-
The says:	General Addition Rule (avoids double counting when not disjoint)
For any two events, A and B ,	$D(\mathbf{A} \sqcup \mathbf{B}) = D(\mathbf{A}) \perp D(\mathbf{B}) = D(\mathbf{A} \cap \mathbf{B})$
The probability of A or B	$P(\mathbf{A} \cup \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) - P(\mathbf{A} + \mathbf{B})$
Conditional Probability [restricts the "Who"]	$P(\mathbf{A} \cup \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) - P(\mathbf{A} \cap \mathbf{B})$ $P(\mathbf{B} \mathbf{A}) = \frac{P(\mathbf{A} \cap \mathbf{B})}{P(\mathbf{A})}$
	$(P(\mathbf{A}))$
	$P(\mathbf{B} \mathbf{A})$ is read "the probability of B given A ."
The says:	General Multiplication Rule (adjusts for non-independence)
For any two events, A and B ,	
The probability of A and B	$P(\mathbf{A} \cap \mathbf{B}) = P(\mathbf{A}) \times P(\mathbf{B} \mathbf{A})$
Events A and B are disjoint	When $P(\mathbf{B} \mathbf{A}) = 0$ (From conditional probability formula because
	the intersection as shown in a Venn diagram is 0.) /*see IL notes*/
Events A and B are independent	When $P(\mathbf{B} \mathbf{A}) = P(\mathbf{B})$
Tree diagram	Useful for showing sequences of (conditional) events and
	when utilizing the General Multiplication Rule.
	The probabilities of each set of branches as well as disjoint final outcomes sum to 1.
Reverse Conditioning	
Reverse Conditioning We have $P(\mathbf{A} \mathbf{B})$ but want	$P(\mathbf{B} \mathbf{A})$
We have $P(\mathbf{A} \mathbf{B})$ but want	$P(\mathbf{B} \mathbf{A})$ $P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$
We have $P(\mathbf{A} \mathbf{B})$ but want We need to find and	$P(\mathbf{B} \mathbf{A})$ $P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$ a tree diagram
We have $P(\mathbf{A} \mathbf{B})$ but want	$P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$
We have $P(\mathbf{A} \mathbf{B})$ but want We need to find and With the help of	$P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$ a tree diagram
We have <i>P</i> (A B) but want We need to find and With the help of Chapter 16	$P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$ a tree diagram Random Variables
We have <i>P</i> (A B) but want We need to find and With the help of Chapter 16	$P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$ a tree diagram Random Variables A variable, denoted by a capital letter (X, Y, Z etc.), whose value is
We have <i>P</i> (A B) but want We need to find and With the help of Chapter 16 Random variable Discrete random variable	$P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$ a tree diagram Random Variables A variable, denoted by a capital letter (X, Y, Z etc.), whose value is a numerical outcome of a random event.The theoretical data (possible outcomes) of a probability model. Has a finite number of possible outcomes.
We have <i>P</i> (A B) but want We need to find and With the help of Chapter 16 Random variable Discrete random variable Continuous random variable	$P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$ a tree diagram Random Variables A variable, denoted by a capital letter (X, Y, Z etc.), whose value is a numerical outcome of a random event.The theoretical data (possible outcomes) of a probability model. Has a finite number of possible outcomes. Takes all values in an interval of numbers (infinite or bounded).
We have <i>P</i> (A B) but want We need to find and With the help of Chapter 16 Random variable Discrete random variable	$P(\mathbf{A} \cap \mathbf{B}), P(\mathbf{A})$ a tree diagram Random Variables A variable, denoted by a capital letter (X, Y, Z etc.), whose value is a numerical outcome of a random event.The theoretical data (possible outcomes) of a probability model. Has a finite number of possible outcomes.

	or with any interval of values of a continuous random variable.
Probability histogram	Pictures the probability distribution of a discrete random variable.
	(a relative frequency histogram for a very large number of trials)
Density curve	Pictures the probability distribution of a continuous random variable
	(normal distributions are 1 type)
Expected value of a random	The mean over the long run of a random variable.
variable.	If the random variable is discrete, multiply each possible value by
	the probability that it occurs, and find the sum:
	$\mu_x = E(X) = \Sigma x_i p_i$ The expected value of the squared deviation from the mean
Variance of a random variable.	
	$\sigma^{2}_{x} = \operatorname{Var}(X) = \Sigma(x_{i} - \mu_{x})^{2} p_{i}$
Standard deviation of a random	Describes the spread of the model
variable	$\sigma_{x} = SD(X) = \sqrt{Var(X)}$
//	$a + b\mu_X$ (a and b are constants)
$\mu_{a+bX} = \underline{\qquad}$	$b\sigma_X$ (a and b are constants)
$\sigma_{a+bX} = \underline{\qquad} \\ \mu_{X+Y} = \underline{\qquad} \\ \mu_{X-Y} = \underline{\qquad} \\ \mu_{$	$\mu_X + \mu_Y \qquad \mu_X - \mu_Y$
$\sigma_{X\pm Y} = \underline{\qquad}$	
<u> </u>	$\sqrt{\sigma_X^2 + \sigma_Y^2}$, if X and Y are independent.
	(Pythagorean Theorem of Statistics)
$X_1 + X_2 \neq \underline{\qquad}$	2X, (X ₁ & X ₂ are distinct random variables with the same μ and σ .
	They aren't like terms)
$\mu_{X1+X2} = _ \qquad \mu_{X1-X2} = _$	$\mu_{X1} + \mu_{X2} = 2\mu_X \qquad \mu_{X1} - \mu_{X2} = 0$
$\sigma_{X1\pm X2} = _$	$\sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2} = \sqrt{2\sigma_x^2} = \sigma_x \sqrt{2}$
If two independent continuous	So does their sum or difference.
random variables have Normal	
models,	
Chapter 17	Probability Models
Bernoulli trial	1. two possible outcomes ("success" & "failure")
	2. probability of success is constant p $q = 1 - p$
	3. trials are independent (or sample < 10% of population)
If number, <i>X</i> , of Bernoulli trials	Then Geometric probability model, $Geom(p)$:
until next success [measuring until success]	$P(X=x) = q^{x-1}p$
[measuring until success]	(Expected # of trials until success) $\mu = \frac{1}{p}$ $\sigma = \sqrt{\frac{q}{p^2}}$ Then Bi <u>nomial</u> probability model, Binom(<i>n</i> , <i>p</i>):
If number of successes, X, in n	Then Binomial probability model, Binom(n, p):
Bernoulli trials	$\mathbf{P}(\mathbf{V}-k) = \begin{pmatrix} n \\ n \end{pmatrix} \mathbf{r}^{k} \mathbf{r}^{n-k} \text{where} \begin{pmatrix} n \\ n \end{pmatrix} \qquad n!$
[number of successes, no when]	$P(X=k) = \left(\frac{n}{k}\right) p^{k} q^{n-k}, \text{ where } \left(\frac{n}{k}\right) = \frac{n!}{k!(n-k)!}$
	(Expected # of successes) $\mu = np$ $\sigma = \sqrt{npq}$
Assumptions	Theoretical mathematical requirements
	(independence, large sample, etc.)
Conditions	Practical guidelines that confirm (or sometimes override)
	assumptions.

When using the Geometric or	
Binomial probability models	
check that you have	the 3 requirements of Bernoulli trials.
The Binomial probability model	
becomes difficult/impossible for	
Fortunately it can	large <i>n</i> .
be approximated by	a Normal probability model
as long as we meet the	Success/Failure
Condition that	we expect at least 10 successes and 10 failures:
	$np \ge 10$ and $nq \ge 10$
On the AP Exam students are	
required to, not just	check
the conditions. This	state
means	using the values given in the question to show your work!